Inhibition of E. coli and S. aureus with selenium nanoparticles synthesized by pulsed laser ablation in deionized water

نویسندگان

  • G Guisbiers
  • Q Wang
  • E Khachatryan
  • LC Mimun
  • R Mendoza-Cruz
  • P Larese-Casanova
  • TJ Webster
  • KL Nash
چکیده

Nosocomial diseases are mainly caused by two common pathogens, Escherichia coli and Staphylococcus aureus, which are becoming more and more resistant to conventional antibiotics. Therefore, it is becoming increasingly necessary to find other alternative treatments than commonly utilized drugs. A promising strategy is to use nanomaterials such as selenium nanoparticles. However, the ability to produce nanoparticles free of any contamination is very challenging, especially for nano-medical applications. This paper reports the successful synthesis of pure selenium nanoparticles by laser ablation in water and determines the minimal concentration required for ~50% inhibition of either E. coli or S. aureus after 24 hours to be at least ~50 ppm. Total inhibition of E. coli and S. aureus is expected to occur at 107±12 and 79±4 ppm, respectively. In this manner, this study reports for the first time an easy synthesis process for creating pure selenium to inhibit bacterial growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel ferrite Nanomaterials by Pulsed laser ablation in Water; Structural, Optical and Magnetic Characterizations

Nickel ferrite nanoparticles are synthesized by pulsed laser ablation of corresponding bulk target in the double distilled water. Focused output of fundamental and third harmonics from pulsed Nd:YAG laser operating at 40 and 25 mJ/pulse energy respectively was allowed to irradiate the target. Produced colloidal solution was red in color and stable for several days. XRD, FTIR, VSM techniques are...

متن کامل

Antibacterial activity of Fe3O4 nanoparticles

Antibacterial activity of Fe3O4 nanoparticles was investigated in three microorganisms including P. aeruginosa, E. Coli and Staphylococcus aureus. Fe3O4 nanoparticles were synthesized by chemical precipitation method (20 nm). The Fe3O4 nanoparticles antibacterial effect against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus were studied by the culture method. First of all, e...

متن کامل

Antibacterial activity of Fe3O4 nanoparticles

Antibacterial activity of Fe3O4 nanoparticles was investigated in three microorganisms including P. aeruginosa, E. Coli and Staphylococcus aureus. Fe3O4 nanoparticles were synthesized by chemical precipitation method (20 nm). The Fe3O4 nanoparticles antibacterial effect against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus were studied by the culture method. First of all, e...

متن کامل

Preparation of zinc oxide nanorods using pulsed laser ablation in water media at high temperature.

ZnO columnar single crystals were formed by pulsed laser ablation in deionized water and surfactant aqueous solutions of lauryl dimethylaminoacetic acid (LDA) and cetyltrimethylammonium bromide (CTAB) at 80 degrees C. ZnO particles produced by laser ablation were dissolved at a higher temperature than 60 degrees C, and then crystalline growth to columnar structure proceeded. While large ZnO col...

متن کامل

The synthesis of silver nanoparticles using the water-in-oil biomicroemulsion method

Objective(s): A combination of biological and microemulsion methods was used to synthesize silver nanoparticles for the first time. The applied method could be referred to as the biomicroemulsion method, which has the advantages of both biological and the microemulsion methods.Materials and Methods: In the present study, silver nanoparticles were synthesized in a water-in-oil biomicroemul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016